Geometry R – Mr. Bo Unit 5 – Day 2 (Activity)

Class Demo:

1. Given: $\overline{AB} \And \overline{CD}$ bisect each other at P.

Prove: $\triangle ACP \cong \triangle BDP$

Statements

- AB & CD bisect each other at P.
 P midpt. of AB P midpt. of CD
- 3. $\overline{AP} \cong \overline{BP}$ $\overline{DP} \cong \overline{CP}$
- 4. $\angle 1$ vertical to $\angle 2$
- 5. ∠1 ≅ ∠2
- 6. $\triangle ACP \cong \triangle BDP$

Name	:		
Date:			

Reasons

1. Given

- 2. Seg. Bisector goes through a midpoint.
- 3. Midpoint divides segment into 2 congruent segments
- 4. non-adj. angles formed by 2 intersecting lines are vertical
- 5. Vertical angles are congruent

6. SAS

Group Activity:

1. Given: \overline{EAB} $\angle EAC \cong \angle EAD$ $\overline{CA} \cong \overline{DA}$

Prove: $\triangle ACB \cong \triangle ADB$

Statements

- 1. \overline{EAB} $\angle EAC \cong \angle EAD$ $\overline{CA} \cong \overline{DA}$ 2. $\angle 1$ supplementary to $\angle EAC$ $\angle 2$ supplementary to $\angle EAD$ 3. $\angle 1 \cong \angle 2$ 4. $\overline{AB} \cong \overline{AB}$
- 5. $\triangle ACB \cong \triangle ADB$

Reasons

- 1. Given
- 2. adj. angles formed by 2 intersecting lines are sup.
- 3. Congruent angles have congruent supplements.
- 4. Reflexive
- 5. SAS

2. Given: $\frac{\overline{DA}}{\overline{AC}} / / \overline{\overline{CB}}$ $\overline{\overline{AC}}$ bisects \overline{DB} at E

Prove: $\Delta DEA \cong \Delta BEC$

Statements

- 1. $\overline{DA} / /\overline{CB}$ \overline{AC} bisects \overline{DB} at E 2. $\angle ADE \cong \angle CBE$ 3. E is midpoint of \overline{DB} 4. $\overline{DE} \cong \overline{BE}$ 5. $\angle DEA$ vorticed to $\angle CBE$
- 5. $\angle DEA$ vertical to $\angle BEC$
- 6. $\angle DEA \cong \angle BEC$ 7. $\triangle DEA \cong \triangle BEC$
- $7. \ \Delta DEA \cong \Delta BEC$

1. Given

2. // cut by a trans. make alt. int. angles congruent.

Reasons

- 3. Seg. Bisector goes through the midpoint.
- 4. Midpt. divides a seg. into 2 congruent segs.
- 5. non-adj. angles formed by 2 intersecting lines are vertical.
- 6. Vert. angles are congruent

7. ASA

3. Given: $\overline{AE} \cong \overline{FC}$ $\overline{DE} \cong \overline{BF}$ $\overline{AE} \perp \overline{DEFB}$ $\overline{CF} \perp \overline{DEFB}$

Prove: $\triangle AEB \cong \triangle CFD$

Statements

- 1. $\overline{AE} \cong \overline{FC}$ $\overline{AE} \perp \overline{DEFB}$ $\overline{CF} \perp \overline{DEFB}$ 2. $\angle AEB$ is a right angle $\angle CFD$ is a right angle 3. $\angle AEB \cong \angle CFD$ 4. DE = BF5. DE + EF = BE + EF6. DF = BE
- 7. $\triangle AEB \cong \triangle CFD$

Reasons

- 1. Given
- 2. Perpendicular lines meet at right angles.
- 3. all right angles are congruent
- 4. Given
- 5. Addition
- 6. Segment Addition
- 7. SAS